Surgical Smoke: the Known

Perioperative professionals and patients are routinely exposed to surgical smoke, plume and aerosols produced by instruments used to dissect tissue and provide haemostasis. These surgical devices include lasers, electrosurgical units, ultrasonic units, cautery units, and high speed drills and burrs. Anything that produces heat can produce smoke or aerosols. Smoke and aerosol-generating procedures can pose health risks (Ulmer 2008).

Although the long-term effects for healthcare workers exposed to surgical smoke remains unknown, there is a need to be proactive and prevent any potential harm. Engineering controls and personal protective equipment should be used to protect all staff and patients from exposure to smoke by-products. Understanding the environmental hazards related to surgical smoke and aerosols produced during all operative and invasive procedures is a critical first step in the implementation of adequate protective measures for both patients and perioperative personnel.

Surgical smoke is part of the patient-care environment wherever surgical and/or invasive procedures are done. It has been described as part of the chemical soup that is present during the care of perioperative patients. The air quality in operating rooms around the world has been a concern for over three decades (Rothrock 2007).

What is Surgical Smoke?

Surgical smoke is called by a variety of names, including cautery smoke, diathermy plume, plume, smoke/plume, aerosols, bio-aerosols, vapour and air contaminants. It can be seen and smelled (Ott 1997).

How is Smoke Produced?

Tools to achieve haemostasis and dissection include electrosurgery units, lasers, ultrasonic devices, high-speed drills, burrs and saws. All of these devices produce heat, which allow the surgeon to achieve the desired tissue effect. The most common device used is the electrosurgery unit. Electrosurgery uses high-frequency current to cut and coagulate tissue. The electricity releases the cellular fluid as steam and spews the cell contents into the air forming surgical smoke plume.

Lasers are the second most common heat-producing device. Lasers produce high heat that boils and explodes the cells. This cellular vaporisation releases steam and cell contents (Anderson 2004). When the particulate matter of both laser and electrosurgical smoke are compared they are very similar, as identified by ECRP (1990). Facility policies on smoke evacuation should be the same for electrosurgery units and for lasers (ERI 1990).

Contents of Surgical Smoke

Barrett and Garber identified a long list of chemicals present in surgical smoke. Two of the chemicals of concern were acrylonitrile and hydrogen cyanide. Acrylonitrile is a volatile, colourless chemical that can be absorbed through the skin and lungs. Acrylonitrile liberates hydrogen cyanide. Hydrogen cyanide is toxic, colourless and can also be absorbed into the lungs, through the skin and via the gastrointestinal tract (Barrett & Garber 2004).

The Best Defence against Smoke

Former AORN Journal Editor Brenda Gregory Dawes stated in 2000 that a 'stop smoke campaign begins with you. 'Use available tests and knowledge to minimize exposure to surgical smoke. Until there are regulations that reduce the occupational hazard of surgical smoke become an expert in what can be done' (Dawes 2000).

Smoke Evacuation System

Portable smoke evacuation systems are presently the most viable choice for operating rooms. The most effective smoke evacuation system is equipped with a ultra-low penetration air (ULPA) filter. ULPA filters capture 0.12 micron particulate matter at an efficiency rate of 99.9999 percent. At that rate only one in 1 million particles will escape capture (Ulmer 2008). The system is made up of a prefilter that captures large particles. The ULPA filter is the second stage of the filters, and captures the smaller particulate components of smoke. The third filter is made up of a special charcoal that captures the toxic chemicals found in smoke. An effective smoke evacuation system should be able to pull 30 to 50 cubic feet per minute (CFM) to be able to capture surgical smoke (ERI 2007).

Recommended Practices, Guidelines, Standards, and Regulations

The need to evacuate and appropriately filter surgical smoke is being recognized around the world as countries move to provide a safer environment for perioperative personnel and patients.

Nordic Countries

The guidelines in the Nordic countries are currently one of the most prescriptive on surgical smoke. Translated, the document states:

- Comparisons between laser smoke and diathermy smoke (electrocoagulation) show that even diathermy smoke can contain insanitary substances, and measures should be taken to eliminate such smoke. (Rapport: 1994: 1)

Crete

- Smoke, produced at surgical treatment with carbon dioxide laser, must be treated as insanitary and the risk of contamination cannot be eliminated.

- Generated smoke is quickly spread in the air of the operating room. A well designed point aspiration device is required to prevent this, including a filter to be changed regularly. Preferably a filter guard should be installed to ensure that the required filter capacity is always maintained.

- The filters should be treated as hazardous waste and routine for waste management are required. If sufficient ventilation cannot be arranged, concerned personnel should be protected with adequate respirators (Rapport: 1994: 1)

United Kingdom

The British Occupational Hygiene Society (BOHS) has developed a guidance document on surgical smoke to be used by managers in the National Health Service. The document acknowledges the harmful effects of the contents of surgical smoke and recommends that local exhaust ventilation (LEV) be used to evacuate and filter the smoke:

"Threats usually have high rates of general ventilation. This does not, however, prevent the emission of smoke into the room or the exposure of staff. Local exhaust ventilation (LEV) is required to achieve this. The known irritancy, the other hazardous properties of the component contaminants, and the persistent concerns of chronic effects combine to lead to the conclusion that effective LEV should be considered a required control measure" (BOHS 2006).

Canada

The Canadian Standards Association (CSA) has developed a very detailed standard for smoke evacuation in Canada. The document identifies the dangers of surgical smoke and goes into significant detail about the importance of evacuating and filtering smoke/plume whenever it is produced (CSA 2009).

World Nursing Organisations

The Association for Perioperative Practice (APP)

APP is a registered charity working to enhance the knowledge and skills of all nurses working in the independent sector throughout the UK. The Association for Perioperative Practice (APP) urges the use of personal protective equipment and evacuation and filtration of smoke. The statement further says that the perioperative personnel must be educated about the dangers of surgical smoke to increase awareness of the need to evacuate and filter smoke (ADPR 2008).

Australian College of Operating Room Nurses (ACORN)

ACORN is made up of perioperative nurses across Australia. The organisation practice guidelines include recommendations on smoke evacuation:

- Principle: The prevention of patients' and healthcare personnel's exposure to surgical smoke and plume is recommended.

- • Personnel shall utilise appropriate equipment and procedures to prevent exposure to surgical plume

- • Exposure to surgical plume shall be minimized during the surgical procedure

- Surgical smoke capture devices shall be available for use during procedures in which surgical smoke is generated (ACORN 2006).

The International Federation of Perioperative Nurses (IFPN)

IFPN is an international organisation of perioperative nurses. The organisation represents professional nurses across the world. In July 2007, IFPN adopted a guideline aimed at protecting perioperative personnel for surgical smoke:

"It is important that employers and employees are aware of the problem of smoke plume and ensure that there are policies in place to reduce the exposure to smoke plume and that such policies also comply with workplace health, safety, and/or legislative guidelines, and with International Electrotechnical Commission (IEC) standards pertinent to the particular healthcare setting" (IFPN 2007). The guideline can be accessed at www.ifpn.org.uk.

Operating Room Nurses Association of Canada (ORNAC)

ORNAC is the organisation representing perioperative nurses throughout Canada. The Canadian surgical smoke recommended practices state: "Whenever electrocoagulation is used, it should be used in conjunction with a smoke evacuator" (ORNAC 2007).

References

AORN Journal

AORN 2006 Standards/Surgical Plume Australian College of Operating Room Nurses


Anderson K 2004 Safe use of lasers in the operating room AORN Journal 79 (1) 171-188

AORN 2008 Position statement on surgical smoke and aerosols

AORN Journal 87 (5) 721-738

BOHS 2006 Guidance Surgical Smoke Derby, British Occupational Hygiene Society

CSA 2009 Surgical, diagnostic, therapeutic, aesthetic plume scavenging Z015.13 Mississauga, Ontario, Canadian Standards Association

Dawes RS 2000 Stop smoke campaign begins with you. AORN Journal 72 (5) 768-770

Emergency Care Research Institute 1990 ESU smoke - should it be evacuated? Health Devices 19 (1) 12

International Federation of Perioperative Nurses 2007 IFTP guidelines on smoke plume Available from: www.ifpn.org.uk/acting/practiceguidelines/standards/surgicalsmokeandbioaerosols


Rapport 2007 Recommended standards, guidelines and position statements for perioperative nursing practice Operating Room Nurses Association of Canada, Canada

Rothrock JC 2006 AORNAC's position on the patient in surgery 13th ed St. Louis, Mosby Elsevier p217

Ulmer BC 2008 The hazards of surgical smoke AORN Journal 87(4) 721-738

Further reading

Halim P, Naess O 1991 Laryngal papillomatosis with human papillomavirus DNA contracted by a laser surgeon European Archives of Otorhinolaryngology 244 (7) 423-427

DISHA 2000 DSHA shelves plan to issue bulletin on surgical smoke Hospital Employee Health July 78-80


Vallelab 1998 Surgical Smoke: What We Know Boulder CO, Valleylab.
Perioperative professionals and patients and are routinely exposed to surgical smoke, plume and aerosols produced by instruments used to dissect tissue and provide haemostasis. These surgical devices include lasers, electrosurgical units, ultrasonic units, cautery units, and high-speed drills and burrs. Anything that produces heat can produce smoke or aerosols. Smoke and aerosol-generating procedures can pose health risks (Ulmer 2008).

Although the long-term effects for healthcare workers exposed to surgical smoke remains unknown, there is a need to be proactive and prevent any potential harm. Engineering controls and personal protective equipment should be used to protect all staff and patients from exposure to smoke by-products. Understanding the environmental hazards related to surgical smoke and aerosols produced during all operative and invasive procedures is a critical first step in the implementation of adequate protective measures for both patients and perioperative personnel.

The Association for Perioperative Practice acknowledges the contribution of Brenda C Ulmer, RN, MN, CNOR, in the creation of this poster.